Accidental Hydrogen Peroxide Ingestion: Consequences and Their Management

Neeraj Kumar

All India Institute of Medical Sciences Patna, Department of Anaesthesiology and Critical Care, Bihar, India

Keywords: Hydrogen peroxide, poisoning, ingestion, HBOT

Hydrogen peroxide (H_2O_2) is a clear, colorless, odorless liquid that usually exists in solutions with concentrations ranging from 3% to 90%. It is relatively unstable and will rapidly decompose, through an exothermic reaction into water and oxygen in the presence of alkali, metals, and the enzyme catalase, which is usually found in mucous membranes, liver, kidney, red blood cells, and bone marrow (1). They can cause corrosive damage, oxygen gas formation, and lipid peroxidation. After coming in close contact with the stomach wall, it releases oxygen, which then diffuses inside the blood vessel, which further leads to gasinduced hypervascularity, especially in the portal system, gastric wall, cerebral vessels, and pulmonary vessels, because of the high concentration of oxygen, which exceeds the maximum solubility of blood. Often, intravascular foaming can affect right ventricular output. One swallow, approximately 30 mL, of 35% H₂O₂ can produce 3400-mL oxygen gas (2). There may be some therapeutic value of hyperbaric oxygen therapy (HBOT) for treating vascular gas embolism and mitigation of concentrated H₂O₂ ingestion toxicity.

Zengin et al. (3) reported hepatic portal venous gas in a 20-yearold male after ingesting 30 mL of 30% H₂O₂, and the case was conservatively managed and discharged on 4th day. No HBOT was used. However, various studies showing the mortality benefit of HBOT after H₂O₂ ingestion are shown in Table 1.

Youssef et al. (4) reported that the differential diagnosis of portal vein gas following H₂O₂ ingestion is pneumobilia and pneumoperitoneum, on X-rays both present with sword lucency in the right paraspinal region (Saber sign) and cupola sign, respectively. On computed tomography, pneumobilia has branch air densities with more central distribution, and pneumoperitoneum has free air densities in peritoneal cavities.

Chung and Jeong (5) reported oxygen embolism (sudden drop of P_{rr}CO₂ from 35 mmHg to 22 mmHg) in a 39-year-old male caused by accidental subcutaneous injection of 3% of 50 mL H₂O₂ following right acetabulum fracture surgery.

Vander Heide and Seamon (6) reported the case of an 82-yearold woman who accidentally ingested food-grade peroxide and developed severe neurological sequelae and seizures.

Pak et al. (7) reported a case of a 52-year-old male who accidentally ingested approximately 100 mL of 35% H₂O₂, resulting in the sudden onset of gastrointestinal and neurological symptoms.

Current recommendations for HBOT in cerebral air gas embolisms involve the use of Navy Dove, which takes patients to a depth of 3 atmospheres absolute (ATA) for 60 min followed by 120 min at 2 ATA with several air breaks interspersed throughout, taking a total of 285 min to complete (8). As per Boyles' law, the volume of gas emboli is decreased, which increases the solubility of gas into the tissues and plasma, leading to rapid resolution of vascular occlusion.

Hatten et al. (9) conducted a retrospective analysis over a period of 10 years from the National Poison Data System and concluded that high-concentration (>10%) peroxide ingestion occurred in 294 cases, of which 41 cases developed embolic events and 20 cases either died or presented with sustained disability. Death occurred in 5 of 294 symptomatic patients with evidence of

Corresponding Author: Neeraj Kumar MD, All India Institute of Medical Sciences Patna, Department of Anaesthesiology and Critical Care, Bihar, India E-mail: drneerajk@aiimspatna.org ORCID ID: orcid.org/0000-0002-9161-7000

Received: 06.06.2024 Accepted: 07.06.2024

Cite this article as: Kumar N. Accidental Hydrogen Peroxide Ingestion: Consequences and Their Management. Eurasian J Emerg Med. 2024;23(2): 81-3.

©Copyright 2024 The Emergency Physicians Association of Turkey / Eurasian Journal of Emergency Medicine published by Galenos Publishing House Licenced by Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND) 4.0 International License.

possible embolic events on follow-up at the poison center (Table 2).

Conclusion

 H_2O_2 is very unstable and easily decomposes to form oxygen and release heat. The severity of H_2O_2 ingestion will depend on the concentration used, exposure route, and contact time. The two concentrations mainly used for H_2O_2 are 3% and >10% for medical disinfection and industrial use, respectively. A concentration of >30% is corrosive to the skin, mucosa, and other local tissues. Shock, coma, convulsions, and pulmonary and cerebral edema may occur within 24-72 hours after exposure to highly concentrated hydrogen peroxide. Early use of Hyperbaric oxygen therapy may serve as an effective mode of treatment for improving clinical conditions.

Table 1. H ₂ O ₂ ingestions without mortality on being treated with (HBOT)							
First author	Years	Number of cases	Age and sex	Volume ingested (mL) concentration (%)	Symptoms	Length of hospital stay	
Mullins and Beltran (2)	1998	01	35 years/female	30 mL, 35%	Foaming, emesis, confusion, ataxia, dysarthria, hemiparesis	1	
Vander Heide and Seamon (6)	2003	01	82 years/female	89 mL, 35%	Confusion, ataxia, diplopia, foaming, hematemesis	3	
Ciechanowicz et al. (11)	2007	01	54 years/male	100 mL, 90%	Chest pain, abdominal pain, hematemesis, hemiparesis, obtunded	8	
Rider et al. (10)	2008	01	48 years/male	5-10 mL, 33%	Vomiting, hematemesis, headache, confusion, hemiparesis	4	
French et al. (12)	2010	11	Mean age 50 years M: F: 6:5	230 mL, 12-35%	Oral burns, emesis, abdominal pain, chest pain, hematemesis, sore throat, seizure, nausea	Mean 1.57 days	
Papafragkou et al. (13)	2012	01	32 years/female	Volume ingested unknown, 35%	Abdominal pain, nausea, emesis, portal emboli	3	
Manning et al. (14)	2014	01	23 years/female	30 mL, 35%	Tachycardia, epigastric pain and vomiting	4	

Table 2. Ingestion of H ₂ O ₂ associated with mortality							
Cases	Age and sex	Volume ingested (mL) concentration (%)	Symptoms	Cause of death			
01	35 years/female	180 mL, unknown	Emesis, AMS, tachycardia, decerebrate posturing, seizure, ventricular tachycardia, and herniation	Seizure at home and incapacitated for 1 h before presentation. Intubated on arrival. X-ray/CT without extraluminal gas. EGD with gastritis. Cerebral herniated in ICU.			
02	82 years/female	30 mL, 35%	Emesis, possible aspiration, altered mental status, tachycardia	Airway protected for decreased LOC/emesis. But succumbed inside the ICU due cerebral herniation.			
03	69 years/male	<45 mL, 20-40%	Elevated troponin level and altered mental status	Intubated for decreased LOC. Refusal for HBOT by relatives. Suspected basilar insult. Care withdrawn.			
04	55 years/male	960 mL, 35%	Emesis, respiratory distress, altered mental status, tachycardia	Patient have multiple infarcts in pons, brainstem, cerebellum, and cerebral cortex with hemorrhagic transformation with midline shift died due features of raised ICP in ICU.			
05	73 years/male	15 mL, 35%	Altered mental status, tachycardia and vomiting	Intubated for decreased LOC and emesis, but succumbed inside the ICU.			
ICU: Intensive care unit, EGD: Esophagogastroduodenoscopy, LOC: Level of consciousness, ICP: Intracranial pressure, HBOT: Hyperbaric oxygen therapy, CT: Computed tomography							

References

- 1. Watt BE, Proudfoot AT, Vale JA. Hydrogen peroxide poisoning. Toxicol Rev. 2004;23:51-7.
- Mullins ME, Beltran JT. Acute cerebral gas embolism from hydrogen peroxide ingestion successfully treated with hyperbaric oxygen. J Toxicol Clin Toxicol. 1998;36:253-6.
- Zengin S, Al B, Genç S, Yarbil P, Yilmaz DA, Gulsen MT. A rare case of portal vein gas: accidental hydrogen peroxide ingestion. BMJ Case Rep. 2012;30:2012: bcr0120125602.
- Youssef EW, Chukwueke VS, Elsamaloty L, Moawad S, Elsamaloty H. Accidental Concentrated Hydrogen Peroxide Ingestion Associated with Portal Venous Gas. | Radiol Case Rep. 2018;12:12-6.
- Chung J, Jeong M. Oxygen embolism caused by accidental subcutaneous injection of hydrogen peroxide during orthopedic surgery: A case report. Medicine (Baltimore). 2017;96:e8342.
- Vander Heide SJ, Seamon JP. Resolution of delayed altered mental status associated with hydrogen peroxide ingestion following hyperbaric oxygen therapy. Acad Emerg Med. 2003;10:998-1000.
- Pak S, Valencia D, Lee C, Lach J, Ortiz G. Ingestion of food grade hydrogen peroxide with resultant gastrointestinal and neurologic symptoms treated with hyperbaric oxygen therapy: case report and review with emphasis on the therapeutic value of HBO2 in vascular gas embolism. Undersea Hyperb Med. 2021;48:177-86.
- Byrne B, Sherwin R, Courage C, Baylor A, Dolcourt B, Brudzewski JR, et al. Hyperbaric oxygen therapy for systemic gas embolism after hydrogen peroxide ingestion. J Emerg Med. 2014;46:171-5.

- Hatten BW, French LK, Horowitz BZ, Hendrickson RG. Outcomes After High-Concentration Peroxide Ingestions. Ann Emerg Med. 2017;69:726-36.
- Rider SP, Jackson SB, Rusyniak DE. Cerebral air gas embolism from concentrated hydrogen peroxide ingestion. Clin Toxicol (Phila). 2008;46:815-8.
- Ciechanowicz R, Sein Anand J, Chodorowski Z, Kujawska-Danecka H. Ostre zatrucie nadtlenkiem wodoru powikłane zatorami powietrznymi ośrodkowego układu nerwowego--opis przypadku [Acute intoxication with hydrogen peroxide with air emboli in central nervous system--a case report]. Przegl Lek. 2007;64:339-40.
- French LK, Horowitz BZ, McKeown NJ. Hydrogen peroxide ingestion associated with portal venous gas and treatment with hyperbaric oxygen: a case series and review of the literature. Clin Toxicol (Phila). 2010;48:533-8.
- Papafragkou S, Gasparyan A, Batista R, Scott P. Treatment of portal venous gas embolism with hyperbaric oxygen after accidental ingestion of hydrogen peroxide: a case report and review of the literature. J Emerg Med. 2012;43:21-3.
- Manning EP, Laskowski LK, Nelson LS, Touger M. Images in emergency medicine. Young woman with epigastric pain and vomiting. Ingestion of 35% hydrogen peroxide. Ann Emerg Med. 2014;64:330-3.