Original Article

Eurasian J Emerg Med. 2021;20(4): 241-54

Emergency Medicine Physicians' Approaches to Coping with Stress in COVID-19 Pandemic

Abstract

Aim: This study aimed to investigate the stress experienced by emergency medicine physicians working in emergency departments during the coronavirus disease-2019 (COVID-19) pandemic, the factors they stated to be effective against stress, and their coping approaches to stressful situations.

Materials and Methods: The study was designed in a general screening model, and 200 emergency medicine physicians participated via e-mail who work in emergency departments in Turkey. The sources of stress related to the pandemic, the factors that they find effective in combating stress, and their strategies to cope with stress were investigated with relation to their gender, marital status, after-shift accommodation, manner of working in a shift, smoking behavior, having a chronic disease, having children, and spouse's job as a healthcare professional.

Results: While the primary source of stress of emergency medicine physicians during the pandemic was the risk of transmitting the virus to their families, the most influential factor in combating stress was leisure activities. Emergency physicians' approaches to coping with stress were significantly predicted by the variables of using full personal protective equipment while working, having an adequate sleep and resting opportunities, obtaining additional economic income, and not knowing the pandemic's end date.

Conclusion: Emergency medicine physicians used active problem-oriented approaches, and among these, they used the social support seeking approach the most during the pandemic. It is necessary to provide social support, take precautions to care for healthcare workers' families and arrange emergency physicians' shifts to allocate their time to their leisure activities appropriately to reduce stress.

Keywords: COVID-19, coping with stress, emergency medicine physician, pandemic, stress

Introduction

The coronavirus disease 2019 (COVID-19) epidemic, which started in November 2019 in China, caused an increase in the workload, working hours, and healthcare professionals' psychological stress (1). Work-related stress is associated with an overloaded work environment where demand exceeds capacity, and it affects healthcare professionals gravely (2). Emergency medicine physicians (EMPs) on the front line have become very sensitive to physical exhaustion, fear, emotional depression, and sleep problems especially; both due to increased workload and their close contact with infected patients (3). During the COVID-19 pandemic, healthcare professionals work knowing that this is

a fatal virus, human-to-human transmission is high, they lack personal protective equipment (PPE), and there is no definitive evidence-based treatment yet (4). Also, physicians' emotional trauma increases even more with the deaths they encounter, including their colleagues (5). In a study by Lai et al. (6); it has been reported that physicians who met the patient first experienced depression, insomnia, and intense anxiety.

Work-related stress has psychological consequences such as mood depression, anxiety, and feelings of helplessness (7). It also has physiological results such as hypertension, cardiovascular disease (8,9). The importance of stress management in the prevention of cardiovascular diseases is emphasized in the guideline (9). It leads

Corresponding Author: Asst. Prof. Mehmet Cihat Demir, M.D., Department of Emergency Medicine, Düzce University, Düzce, Turkey

E-mail: mdcihat@gmail.com ORCID ID: orcid.org/0000-0002-0106-3383

Cite this article as: Demir MC, Ataman AK. Emergency Medicine Physicians' Approaches to Coping with Stress in COVID-19 Pandemic. Eurasian J Emerg Med. 2021;20(2):241-54.

© Copyright 2021 by the Emergency Medicine Physicians' Association of Turkey Eurasian Journal of Emergency Medicine published by Galenos Publishing House.

Received: 18.09.2020

Accepted: 08.12.2020

¹Department of Emergency Medicine, Düzce University, Düzce, Turkey

²Department of Emergency Medicine, Okan University, Istanbul, Turkey

to undesirable situations such as decreased job satisfaction, decreased productivity and production, and eventually losing experienced personnel (7). When it is evaluated in terms of healthcare professionals, it can be seen that job-related burnout directly affects the quality and safety of the health service provided (10). Determining the sources of stress and the approaches to combating the stress of EMPs, who are working at the forefront during the pandemic, are of great importance.

Although many studies on the stress and anxiety of healthcare professionals before the pandemic, the studies related to the additional load encountered due to the epidemic are limited. It is essential to know the sources of stress and EMPs' strategies to cope with the stress to successfully combat the pandemic that greatly impacted social life and has an unknown end date. Even though the entire community needs to give their best effort, successful public health outcomes are mainly dependent on the effective work of the health workforce (11).

Approaches to coping with stress are addressed in two ways in terms of their functions: the management or alteration of the person-environment relationship that is the source of stress (problem-oriented coping) and the regulation of stressful emotions (emotion-oriented coping) (12). In this study, EMPs' stress management approaches were examined in the context of problem-oriented and emotion-oriented coping. In addition to the individual, institutional and social benefits of the data to be obtained, it will also help define healthcare professionals' stress sources, the factors they stated to effective in combating the stress efficiently, and their approaches to coping with stress. It is even thought that it will help prepare the content and method of preventive and supportive services offered to health professionals.

Materials and Methods

Study Design and Setting

This research was planned as a descriptive study in the general screening model to reveal the factors that affect the stress and coping strategies of EMPs working in the emergency departments (EDs) during the COVID-19 pandemic. This study was approved by Düzce University Non-Interventional Clinical Research Ethics Board with the registration number 2020/84.

Selection of Participants

This research was conducted on EMPs who work in EDs in Turkey during the COVID-19 pandemic. The minimum sample size of the research was calculated as 185 (n) with the following formula (13): $n = t^2pq/d^2$ [t: 1.96; p: 0.14, q:0.86, d:0.05]. The data collection tools used in the research were sent to the 276 EMPs'

via e-mail. However, 200 EMPs participated in the study (with a response rate of 72.5%).

Measurements

Stress Coping Scale was developed by Folkman and Lazarus, is a 4-point Likert type scale with 66 items, which is frequently used in studies investigating the issue of dealing with stress (12). "Stress Coping Styles Scale", adapted by Sahin and Durak in Turkish, consists of 30 items (14). Sub-dimensions of the scale are self-confident, optimistic, social support seeking, helpless, and submissive approach. The first three of the subscales are called the active problem-oriented. The other two are called passive emotion-oriented. The increase in the scores obtained from the self-confident, optimistic, and social support seeking approach factors of the participants show that they use active styles more in coping with stress. The increase in the scores obtained from the helpless and submissive approach factors indicates that they use passive styles to cope with stress (14). The high scores obtained from the subscales indicate that the sub-scale approach is used more in dealin with stress. However, since the most elevated scores obtained from each subscale differ from each other, corrected scores were calculated in the analysis of the data.

Confirmatory factor analysis was performed to test the construct validity of the scale within the scope of this study and the obtained values were found to be at good and acceptable levels [2/SD =1.523, RMSEA=0.051, CFI=0.903, TLI=0.882] (15). Cronbach's alpha value was 0.84 for problem-oriented, 0.82 for emotion-oriented, 0.79 for self-confident, 0.76 for optimistic, 0.53 for social support seeking, 0.65 for submissive and 0.77 for helpless approach was calculated.

A personal information form was created to determine the participants' demographic information, consisting of questions of age, gender, marital status, having children, the spouse being a healthcare professional, smoking, having a chronic disease, after-shift accommodation, manner of working in a shift.

Pandemic Stress Factors Questionnaire was developed by the researchers to reveal the stress-related factors experienced by the participants during the COVID-19 pandemic. Open-ended questions were included to reveal the stressful situations of EMPs during the pandemic, and which factors they think are useful in coping with stress.

Statistical Analysis

The data was analyzed using SPSS 17 statistics program, with a 95% confidence level. Frequency, percentage, mean, median, and standard deviation were used to describe the demographic characteristics of EMPs, the factors that they considered as a source of stress during the COVID-19 pandemic, the factors

that they stated to be effective in dealing with stress, and their coping approaches. Mann-Whitney U, chi-square, and stepwise (forward) multiple regression analyses were conducted for further investigations.

Results

The average age and shift time of participants was 36.21 ± 6.16 years and 18.89 ± 6.17 hours, respectively. Detailed demographic characteristics of 200 EMPs who participated in the study were presented in Table 1.

Results towards the approaches of EMPs show that they used the problem-oriented rather than emotion-oriented approach $[\overline{X}_p=61.8\pm14.5; \, \overline{X}_e=33.10\pm16.15]$. Besides, it was found that they resorted to seeking social support mostly $[\overline{X}_{p1}=64.6\pm17.5]$. Other approaches were self-confident $[\overline{X}_{p2}=62.6\pm17.5]$, optimistic $[\overline{X}_{p3}=58.4\pm19.5]$, helpless $[\overline{X}_{e1}=33.5\pm18.2]$ and submissive $[\overline{X}_{c2}=32.5\pm17.9]$.

It has been determined that EMPs' problem-oriented (p=0.020) and optimistic (p=0.015) approaches differ significantly in favor of men according to gender (Table 2). Married EMPs had a passive stress approach with a higher average than singles (p=0.041). The submissive stress approach of EMPs remained with their family after their shift was higher than those who remained alone (p=0.047). It was found that the helpless stress approach of the married EMPs is higher than the average of the singles (p=0.022).

Also, the helpless stress approach average of smoker EMPs was higher than that of non-smokers (p=0.039).

The factors that the EMPs stated that they caused stress during the COVID-19 pandemic were transmitting the virus to the family (f:150, 75%), unknown end date of the pandemic (f:148, 74%), the risk of self-contamination (f:134, 67%), discomfort from PPE (f:132, 66%), lack of definitive treatment or vaccine (f:119, 59.5%), the necessity of frequent cleaning and equipment change (f:109,54.5%), lack of full PPE (f:72, 36%), long shifts (f:60, 30%), lack of medical equipment (f:58,29%), having fewer colleagues during shifts (f:55, 27.5%), and comorbidity (f:22, 11%).

The research data examining the relationship between stress sources that EMPs experience during the COVID-19 pandemic and demographic variables are presented in **Table 3**. Accordingly, the risk of transmitting the virus to the family was found to be related to the marital status (p=0.004) and after-shift accommodation (p=0.009). The risk of self-contamination was associated with the manner of working in a shift (p=0.021). It was observed that the comorbidity as a stressor was related to the chronic disease status (p=0.000), the lack of medical equipment was related to gender (p=0.019), marital status (p=0.035), and chronic disease (p=0.021). The necessity of frequent cleaning and equipment change was associated with gender (p=0.004) and smoking (p=0.027). Besides, the lack of PPE was related to marital status (p=0.025) and the manner of working in a shift (p=0.034).

Variables	n		f	%
Condon	200	Female	88	44
Gender	200	Male	112	56
Manital status	200	Married	126	63
Marital status	200	Single	74	37
Aft	200	Alone	77	38.5
After-shift accommodation	200	With family	123	61.5
C	200	Smoker	69	34.5
Smoking behavior	200	Non-smoker	131	65.5
Having shoonis disease	200	Yes	28	14.0
Having chronic disease	200	No	172	86.0
Mannay of working in a shift	200	Alone	105	52.5
Manner of working in a shift	200	With another EMP _(s)	95	47.5
Having shildren	143*	Yes	107	74.8
Having children	143"	No	36	25.2
Cunavaria in handahan menganianal	120	Yes	73	57.9
Spouse's job as a healthcare professional	126	No	53	42.1

Table 2. Investigating Coping With Stress Approaches of	tigating	3 Coping \	With Stress	Approache		EMPs According to the Demographic Variables	the Demogr	aphic Vari	iables						
Variable		Problen	Problem-oriented	Self- confident		Optimistic		Social support		Emotion-oriented	oriented	Submissive	sive	Helpless	
	z	MR	SR	MR	SR	MR	SR	MR	SR	MR	SR	MR	SR	MR	SR
Gender															
Female	88	89.81	7,903	94.97	8,357	89,30	7,858	94.59	8,323.5	101.44	8,926.5	101.82	8,960	101.98	8,974.5
Male	112	108.90	12,197	104.85	11,743	109.30	12,242	105.15	11,776.5	92.66	11,173.5	99.46	11,140	99.33	11,125.5
	200	U=3,987 p=0.020* d=0.332	*(U=4441 p=0.229		U=3,942 p=015* d=0.348		U=4,407.5 p=0.195	2	U=4,845.5 p=0.839	22	U=4,812 p=0.774	2 +	U=4,797.5 p=0.748	10
Marital status															
Married	126	101.12	12,740.5	101.87	12,835	103.61	13,055	95.63	12,049	106.89	13,468	103.81	13,080	107.67	13,566.5
Single	74	99.45	7,359.5	98.18	7,265	95.20	7,045	108.8	8,051	89.62	6632	94.86	7,020	88.29	6,533.5
	200	U=4,584.5 p=0.844	4.5	U=4,490 p=0.662		U=4,270 p=0.318		U=4,048 p=0.116		U=3,857 p=0.041* d=0.291		U=4,245 p=0.289	3	U=3,758.5 p=0.022* d=0.328	ۍ <u>.</u>
After-shift accommodation	pommo	ation													
Alone	77	100.71	7,755	97.19	7,483.5	99.3	7,646	109.39	8,423	90.58	6,974.5	90.25	6,949.5	92.44	7,117.5
With family	123	100.37	12,345	102.57	12,616.5	101.25	12,454	94.93	11,677	106.71	13,125.5	106.91	13,150.5	105.55	12,982.5
	200	U=471.9 p=0.967	6.	U=4,480.5 p=0.520		U=4,643 p=0.815		U=4,051 p=0.082		U=3,971.5 p=0.055		U=3,946.5 p=0.047* d=0.283	6.5 7* 3	U=4,114.5 p=0.118	10
Smoking behavior	vior														
Smoker	69	94.21	6,500.5	99.72	6,880.5	91.08	6,284.5	95.22	6,570.5	108.51	7,487.5	100.96	996'9	112.12	7,736
Non-smoker	131	103.81	13,599.5	100.91	13,219.5	105.46	13,815.5	103.28	13,529.5	96.28	12,612.5	100.26	13,134	94.38	12,364
	200	U=4,085.5 p=0.264	5.5	U=4,465.5	5 p=0.889	U=3,869.5 p=0.093		U=4,155. p=0.344	5	U=3,966.5 p=0.155	5	U=4,488 p=0.935	8 10	U=3,718 p=0.039* d=0.294	
Having chronic disease	c diseas	a													
Yes	28	108.25	3,031	108.84	3,047.5	104.89	2,937	104.48	2,925.5	93.29	2,612	88.2	2,469.5	86	2,744
No	172	99.24	17,069	99.14	17,052.5	99.78	17,163	99.85	17,174.5	101.67	17,488	102.5	17,630.5	100.91	17,356
	200	U=2,191 p=0.444		U=2,174.5 p=0.409	10	U=2,285 p=0.663		U=2,296.5 p=0.691	2	U=2,206 p=0.476		U=2,063 p=0.223	3.5	U=2,338 p=0.805	
Manner of working in a shift	rking in	a shift													
Alone	105	100.78	10,582	98.58	10,350.5	104.43	10,965.5	102.2	10,731.5	96.83	10,167.5	98.25	10,316	95.62	10,040.5
With another EMP(s)	95	100.19	9,518	102.63	9,749.5	96.15	9,134.5	98.62	9,368.5	104.55	9,932.5	102.99	9,784	105.89	10,059.5
	200	U=4,958 p=0.942	m	U=4,785.5 p=0.620		U=4,574.5 p=0.309		U=4,808.5 p=0.658	2	U=4,602.5 p=0.346	2	U=4,751 p=0.561		U=4,475.5 p=0.209	10

Table 2 continued

Variable		Problem	Problem-oriented	Self- confident		Optimistic		Social support		Emotion-oriented	oriented	Submissive	ive	Helpless	
	z	MR	SR	MR	SR	MR	SR	MR	SR	MR	SR	MR	SR	MR	SR
Having children	u														
Yes	107	107 73.25	7,837.5	73.09	7,820.5	74	7,917.5	72.13	7,717.5	71.98	7,702	71.4	7,640	72.69	7,778
No	36	68.29	2,458.5	92.89	2,475.5	20.99	2,378.5	71.63	2,578.5	72.06	2,594	73.78	2,656	69.94	2,518
	143	143 U=1,792.5 p=0.534	2.5	U=1,809.5 p=0.586	25	U=1,712.5 p=0.317		U=1,912.5 p=0.949	2	U=1,924 p=0.993		U=1,862 p=0.765	01	U=1,852 p=0.730	
Spouse's job as a healthcare professional	s a healt	hcare pro	fessional												
Yes		67.92	4,958.5	68.32	4,987.5	63.94	4,667.5	68.71	5,015.5	59.10	4,314	58.84	4,295.5	97.09	4,399
No		57.41	3,042.5	26.86	3,013.5	62.90	3,333.5	56.33	2,985.5	69.57	3,687	69.92	3,705.5	96.79	3,602
		U=1,611.5 p=0.110	2.1	U=1,582.5 p=0.081	10	U=1,902.5 p=0.873		U=1,554.5 p=0.057	2	U=1,613 p=0.112		U=1,594.5 p=0.091	1.5	U=1,698 p=0.241	
MR: Mean rank, SR: Sum of ranks, *p<.05, d: Cohen's d, EMPs: Emergency medicine physicians	?: Sum of	ranks, *p<.(J5, d: Cohen's c	d, EMPs: Emei	rgency medicine	: physicians									

There was a significant relation between long shifts and marital status (p=0.030), after-shift accommodation (p=0.029), manner of working in a shift (p=0.009), having children (p=0.004), and spouse's health professional status (p=0.038). Lack of co-worker was found related to after-shift accommodation (p=0.026), manner of working in a shift (p=0.010) and having children (p=0.007). Besides, the unknown end date of the pandemic was found related to gender (p=0.010). A significant correlation was found between the lack of definitive treatment or vaccine and gender (p=0.002).

The factors that EMPs stated that they were effective in dealing with the stress they experienced during the COVID-19 pandemic were mostly leisure activities (f:124, 62%), having full PPE while working (f:106, 53%), additional income (f:96, 48%), public appreciation (f:83, 41.5%), having adequate sleep and rest (f:74, 37%), religion (f:22, 11%) and psychological support (f:18, 9%). Also, as seen in Table 4, the appreciation was found to be associated with having children (p=0.012) and spouse's being a healthcare professional (p=.009). Getting psychological support was linked to having a chronic disease (p=0.025).

The regression analysis result showed that having full PPE while working and having adequate sleep/rest were significant predictors and explained 5.6% of the total variance in the active coping approaches of EMPs for stress (p=0.003) (Table 5). It was concluded that having full PPE while working was a significant predictor and explained 6% of the total variance in EMPs' self-confidant coping approach to stress (p=0.000). It was determined that having adequate sleep/rest was a significant predictor and explained 2.6% of the total variance in EMPs' optimistic approach to coping with stress (p=0.022). Besides, the additional income was a significant predictor and explained 2.2% of the level of EMPs resorting to social support seeking approach to deal with stress (p=0.037).

According to the multiple regression analysis results, it was concluded that the unknown end date of the pandemic, additional income, and having full PPE variables were significant predictors and explained 7.5% of the total variance in the EMPs' passive coping approach to stress (p=0.002). Additionally, it was decided that the pandemic's unknown end date, additional income, and having full PPE while working were significant predictors and explained 8.7% of the total variance in EMPs' helpless coping approach to stress (p=0.000). However, as a result of forward stepwise regression analysis that revealed the variables predicting EMPs' submissive coping approach to stress, a significant model and independent variable could not be calculated.

Table 3. Relationship between demographic variables and	onship be	tween	demog	raphic var	iables		factors	that ca	use str	ess on	the EMF	s durin،	g the CC)VID-19	the factors that cause stress on the EMPs during the COVID-19 pandemic	٠					
Variables	Transmitting virus	tting	Self- contan	Self- contamination	Comorbidity		Medical equipment	l lent	Equipment change	ent	PPE		Discomfort	rt Lon	Long shifts		Lack of co- worker	End date	a	Treatment/ vaccine	ent/
	Yes	No	Yes	No	Yes	o _N	Yes	o _N	Yes	oN 0	Yes	No	Yes No	Yes	9 N	Yes	No	Yes	oN N	Yes	No
Gender																					
Female	9	23	63	25	8	80	33	25	28	30	34	54 6.	62 26	30	28	21	29	73	15	63 2	25
Male	85	27	71	41	14	86	25 8	87	51	61	38	74 7	70 42	30	82	34	78	75	37	99	99
Chi-square tests of independence	$\chi^2(1) = 0.108$ p = 0.742, $\phi = 0.023$ n = 200	.108	χ 2(1)=1.498 p=0.221 ϕ =0.087 n=200	1.498 21 37	$\chi 2(1) = 0.585$ p=0.444 ϕ =0.054 n=200	0.585 14 74	$\chi 2(1) = 5.514$ p=0.019* $\phi=0.166$ n=200	5.514 9* 6	χ 2(1)=8.249 p=0.004* ϕ =0.203 n=200	6	$\chi 2(1) = 0.474$ p = 0.491 $\phi = 0.049$ n = 200	174	$\chi 2(1)=1.390$ $p=0.238$ $\phi=0.083$ $n=200$		χ 2(1)=1.252 p=0.263 ϕ =0.079 n=200	$\chi 2(1)=1.0$ $p=0.307$ $p=0.072$ $p=0.072$	χ 2(1)=1.042 p=0.307 ϕ =0.072 n=200	χ 2(1)=6.549 p=0.010* ϕ =0.181 n=200	.549	χ 2(1)=90.533 p=0.002* ϕ =0.218 n=200	90.533 12* 8
Marital status										-											
Married	103	23	6/	47	15	111	30	96	99	09	38	88 82	2 44	31	95	31	95	91	35	72	54
Single	47	27	55	19	7	29	28 4	46	43	31	34 4	40 5	50 24	29	45	24	50	57	17	47	27
Chi-square tests	χ2 (1)=8.265 p=0.004*	.265	$\chi^2(1)=2.850$ p=0.091	850	$\chi^2(1)=0.285$ p=0.594	0.285	$\chi^2(1)=4.456$ p=0.035*		$\chi^2(1)=0.617$ p=0.432	217	$\chi^2(1)=5.043$ p=0.025*		$\chi^2(1)=0.129$ p=0.720		$\chi 2(1)=4.723$ p=0.030*	$\chi^2(1)=1.4$	$\chi 2(1) = 1.433$ p=0.231	$\chi^2(1)=0.559$ p=0.455	.559	$\chi^2(1)=0.785$ p=0.376).785 .6
independence	n=200		n=200	<i>n</i>	φ=0.03 n=200	0	φ=0.14 n=200	<i>n</i>	φ=0.03 n=200		ф=0.139 n=200		φ=0.023 n=200	φ=0.13 n=200	200	n=200	00	n=200		φ=0.00 n=200	Ω
After-shift accommodation	mmodatic	u																			
Alone	50	27	54	23	10	29	25	52	43	34	33 2	44 53	3 24	30	47	28	49	59	18	51 2	26
With family	100	23	80	43	12	111	33 6	06	99	57	39 8	84	79 44	30	93	27	96	89	34	89	55
Chi square tests of independence	χ 2(1)=6.765 p=0.009* ϕ =0.184 n=200	765	χ2(1)=0.555 p=0.456 φ=0.053 n=200	922	$\chi 2(1) = 0.505$ p = 0.477 $\phi = 0.050$ n = 200	505	χ 2(1)=0.731 p=0.393 ϕ =0.060 n=200	.31	χ 2(1)=0.091 p=0.763 ϕ =0.021 n=200	191	$\chi 2(1)=2.555$ p=0.110 ϕ =0.113 n=200	255	$\chi 2(1) = 0.447$ p = 0.504 $\phi = 0.047$ n = 200		χ 2(1)=4.788 p=0.029* ϕ =0.155 n=200	$\chi 2(1) = 4.9$ $p = 0.026^{3}$ $\phi = 0.157$ n = 200	χ 2(1)=4.934 p=0.026* ϕ =0.157 n=200	χ 2(1)=0.448 p=0.503 ϕ =0.047 n=200	448	$\chi 2(1)=2.356$ p=0.125 ϕ =0.109 n=200	2.356
Smoking behavior	ior																				
Smoker	48	21	51	18	1	28	19	20	45	24	29 7	40 5	50 19	24	45	17	52	54	15	40	29
Non-smoker	102	29	83	48	11	120	39 6	92	64	29	43 8	88 82	2 49	36	95	38	93	94	37	62	52
Chi square tests of independence	χ2(1)=1.569 p=0.198 φ=0.091 n=200	569	χ 2(1)=2.277 p=0.131 ϕ =0.107 n=200	277	$\chi 2(1)=2.628$ $p=0.105$ $\phi=0.115$ $n=200$	288	$\chi 2(1)=0.110$ p=0.741 ϕ =0.023 n=200	110	$\chi 2(1)=4.880$ p=0.027* ϕ =0.156 n=200	0	χ2(1)=1.662 p=0.197 φ=0.091 n=200	299	$\chi 2(1)=1.961$ p=0.161 φ =0.099 n=200		χ 2(1)=1.147 p=0.284 ϕ =0.076 n=200	$\chi 2(1) = 0.4$ p=0.511 ϕ =0.047 n=200	x2(1)=0.433 p=0.511 \$\phi=0.047 n=200	χ 2(1)=0.994 p=0.319 ϕ =0.070 n=200	.994	$\chi^2(1)=0.102$ p=0.749 ϕ =0.023 n=200	0.102 9 3
Having chronic disease	disease																				
Yes	18	10	20	8	17	11	3	25	12	16	9	19 1	18 10	10	18	6	19	19	6	17	11
No	132	40	114	28	2	167	55	117	97	75	. 89	109 1	114 58	20	122	46	126	129	43	102 7	70

Table 3. continued

Variables	Transmitting virus	tting	Self- conta	Self- contamination	Como	Comorbidity	Medical equipme	Medical equipment	Equipment change		PPE		Discomfort		Long shifts	Lack of worker	Lack of co- worker	End date	a)	Treatment/ vaccine	ent/
	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes No	Yes	No	Yes	No	Yes	No	Yes	No
Chi square tests of independence	χ2(1)=1.993 p=0.158 φ=0.100 n=200	993	χ2(1)=0 p=0.591 φ=0.038 n=200	χ2(1)=0.289 p=0.591 φ=0.038 n=200	p ^a =0.000* \$\phi=0.641 n=200	000* 541 0	χ2(1)=5.28 p=0.021* φ=0.163 n=200	χ2(1)=5.287 p=0.021* φ=0.163 n=200	χ2(1)=1.780 p=0.182 φ=0.094 n=200		χ2(1)=0.210 p=0.647 φ=0.032 n=200	210	χ2(1)=0.043 p=0.836 φ=0.015 n=200		χ2(1)=0.506 p=0.477 φ=0.050 n=200	$\chi^2(1)=0.$ $p=0.553$ $\phi=0.042$ $n=200$	χ2(1)=0.352 p=0.553 φ=0.042 n=200	χ2(1)=0.639 p=0.424 φ=0.057 n=200		χ 2(1)=0.020 p =0.888 ϕ =0.010 n=200	0.020 88 0
Manner of working in a shift	ing in a shi	 <u>#</u>								-				-		-			-		
Alone	77	78	78	27	12	93	36	69	61 4	44	45 (2 09	72 33	40	65	37	89	78	27	67 3	38
with EMP(s)	73	22	99	39	10	85	22	73	48 4	47	27 (6	9 89	60 35	20	75	18	77	70	25	52 4	43
Chi square tests of independence	χ2(1)=0.327 p=0.567 φ=0.040 n=200	327	χ2(1)=5.3 p=0.021* φ=0.163 n=200	χ2(1)=5.307 p=0.021* φ=0.163 n=200	χ2(1)=0. p=0.839 φ=0.014 n=200	$\chi 2(1) = 0.041$ p=0.839 ϕ =0.014 n=200	χ2(1)=2. p=0.083 φ=0.122 n=200	χ2(1)=2.999 p=0.083 φ=0.122 n=200	$\chi 2(1)=1.152$ p=0.283 ϕ =0.076 n=200		χ2(1)=4.511 p=0.034* φ=0.150 n=200		χ 2(1)=0.651 p=0.420 ϕ =0.057 n=200		χ 2(1)=6.898 p=0.009* ϕ =0.186 n=200	χ2(1)=6.6 p=0.010* φ=0.182 n=200	χ2(1)=6.639 p=0.010* φ=0.182 n=200	χ2(1)=0.009 p=0.923 φ=0.007 n=200	600	χ 2(1)=1.704 p=0.192 ϕ =0.092 n=200	1.704 2 2
Having children										!											
Yes	91	16	89	39	17	06	25	82	53 5	54	31 7	9 9/	66 41	24	83	25	82	9/	31	63 4	44
No	26	10	23	13	3	33	14	22	22	14	14	22 2	25 11	17	19	17	19	28	8	21 1	15
Chi square tests of independence	$\chi 2(1)=2.978$ p=0.084 ϕ =0.144 n=143	878	$\chi^2(1)=0.0$ p=0.971 ϕ =0.003 n=143	χ 2(1)=0.001 p=0.971 ϕ =0.003 n=143	χ2(1)=1.2 p=0.258 φ=0.095 n=143	χ 2(1)=1.278 p=0.258 ϕ =0.095 n=143	χ2(1)=3 p=0.070 φ=0.151 n=143	χ2(1)=3.273 p=0.070 φ=0.151 n=143	$\chi 2(1)=1.448$ p=0.229 ϕ =0.101 n=143		χ 2(1)=1.228 p=0.268 ϕ =0.093 n=143		χ 2(1)=0.701 p=0.402 ϕ =0.070 n=143		χ 2(1)=8.096 p=0.004* ϕ =0.238 n=143	χ2(1)=7.3 p=0.007* φ=0.227 n=143	χ 2(1)=7.391 p=0.007* ϕ =0.227 n=143	χ 2(1)=0.619 p=0.432 ϕ =0.066 n=143		χ 2(1)=0.003 p=0.954 ϕ =0.005 n=143).003 4 5
Spouse's job as a healthcare professional	a healthca	are pro	fession	le																	
Yes	59	14	41	32	7	99	22	51	39 3	34	20	53 4	49 24	13	09	21	52	57	16	44 2	29
No	44	6	38	15	8	45	8	45	27 2	. 97	18 3	35 3	33 20	18	35	10	43	34	19	28 2	25
	$\chi^{2}(1)=0.099$ p=0.753	660	$\chi^{2}(1)=3.1$ p=0.075	$\chi^2(1)=3.168$ p=0.075	$\chi^2(1)=0.8$	$\chi^{2}(1)=0.887$ p=0.346	$\chi^{2}(1)=3.830$ p=0.050	:3.830 50	$\chi^{2}(1)=0.076$ p=0.783		$\chi^{2}(1)=0.628$ p=0.428		$\chi^{2}(1)=0.319$ p=0.572		$\chi^{2}(1)=4.320$ p=0.038*	$\chi^2(1)=1.6$ p=0.203	$\chi^{2}(1)=1.622$ p=0.203	$\chi^{2}(1)=2.971$ p=0.085	176	$\chi^{2}(1)=0.695$ p=0.405	.695
	φ=0.028 n=126		φ=0.159 n=126	5 5	φ=0.084 n=126)84 5	¢=0.174 n=126	5. 74	$\phi = 0.025$		$\phi = 0.071$		ф=0.050 n=126	ф <u>п</u>	φ=0.185 n=126	φ=0.113 n=126	13	φ=0.154 n=126		φ=0.074 n=126	4

*Fisher Exact, "><.05, ϕ : Effect size for Phi, transmitting virus: Transmitting the virus to the family, Self Contamination: The risk of self-contamination, Medical equipment: lack of medical equipment, Equipment change frequent cleaning and equipment change, PPE: Lack of full PPE, Discomfort from PPE, Lack of co-worker: Having fewer colleagues during shifts, End date: unknown end date of the pandemic, Treatment/Vaccine: Lack of definitive treatment or vaccine. EMPs: Emergency medicine physicians, PPE: Personel protective equipment, COVID-19: Coronavirus disease-2019, n: Number

	Religion		Additi incom		Full PPE		Appre	ciation	Psyc supp	hological ort	Adequ rest	ıate	Leisu activ	
Variables	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Gender			ı			1				ı			-	1
Female	12	76	44	44	40	48	35	53	8	80	29	59	51	37
Male	10	102	52	60	66	46	48	64	10	102	45	67	73	39
Chi-square tests of independence	χ2(1)=1. p=0.2910 n=200		χ2(1)= p=0.6 φ=0.0 n=200	35	χ2(1)=3 p=0.058 φ=0.134 n=200	3	χ2(1)= p=0.6 φ=0.0 n=200	60 31	χ2(1) p=0. φ=0. n=20	003	χ2(1)= p=0.2 φ=0.0 n=200	94 74	χ2(1) p=0 φ=0. n=20	074
Marital status														
Married	12	114	63	63	69	57	50	76	11	115	47	79	79	47
Single	10	64	33	41	37	37	33	41	7	67	27	47	45	29
Chi-square tests of independence	χ2(1)=0. p=0.384 φ=0.062 n=200	758	χ2(1)= p=0.4 φ=0.0 n=200	52	χ2(1)=0 p=0.515 φ=0.046 n=200	,	χ2(1)= p=0.4 φ=0.0 n=200	96 48	χ2(1) p=0. φ=0. n=20	012	χ2(1)= p=0.9 φ=0.0 n=200	08 08	χ2(1) p=0. φ=0. n=20	019
After-shift accommodati	on			_	_									
Alone	9	68	37	40	43	34	36	41	10	67	32	45	48	29
With family	13	110	59	64	63	60	47	76	8	115	42	81	76	47
Chi-square tests of independence	χ2(1)=0.0 p=0.806 φ=0.017 n=200	061	χ2(1)= p=0.9 φ=0.0 n=200	01	χ2(1)=0 p=0.524 φ=0.045 n=200	ŀ	χ2(1)= p=0.2 φ=0.0 n=200	33 84	χ2(1) p=0. φ=0. n=20	110	χ2(1)= p=0.2 φ=0.0 n=200	91 75	χ2(1) p=0. φ=0. n=20	006
Smoking behavior														
Yes	6	63	38	31	38	31	31	38	8	61	30	39	44	25
No	16	115	58	73	68	63	52	79	10	121	44	87	80	51
Chi-square tests of independence	χ2(1)=0.1 p=0.450 φ=0.053 n=200	571	χ2(1)= p=0.1 φ=0.1 n=200	46 03	χ2(1)=0 p=0.670 φ=0.030 n=200)	χ2(1)= p=0.4 φ=0.0 n=200	75 50	χ2(1) p=0. φ=0. n=20	066	χ2(1)= p=0.1 φ=0.0 n=200	68 97	χ2(1) p=0. φ=0. n=20	026
Having chronic disease							_							
Yes	6	22	17	11	14	14	15	13	6	22	7	21	17	11
No	16	156	79	93	92	80	68	104	12	160	67	105	107	65
Chi-square tests of independence	p ^a =0.094 φ=0.134 n=200	}	χ2(1)= p=0.1 φ=0.1 n=200	03	χ2(1)=0 p=0.732 φ=0.024 n=200	2	χ2(1)= p=0.1 φ=0.0 n=200	62 99	p ^a =0 φ=0. n=20		χ2(1)= p=0.1 φ=0.1 n=200	56 00	χ2(1) p=0. φ=0. n=20	011
Manner of working in a	shift													
Alone	9	96	46	59	57	48	39	66	7	98	39	66	64	41
with EMP(s)	13	82	50	45	49	46	44	51	11	84	35	60	60	35
Chi-square tests of independence	χ2(1)=1 p=0.248 φ=0.082 n=200	332	χ2(1)= p=0.2 φ=0.0 n=200	88	χ2(1)=0 p=0.702 φ=0.027 n=200	2	χ2(1)= p=0.1 φ=0.0 n=200	89 93	χ2(1) p=0. φ=0. n=20	086	χ2(1)= p=0.9 φ=0.0 n=200	65 03	χ2(1) p=0. φ=0. n=20	023
Having children														
	T				F0	40	40			00	42	65	70	27
Yes	14	93	52	55	58	49	49	58	9	98	42	65	70	37

Table 4. continued

Variables	Religion		Additi incom		Full PPE		Appre	ciation	Psycl supp	nological ort	Adequa rest	ate	Leisu activ	
variables	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No
Chi-square tests of independence	p ^a =0.116 φ=0.146 n=143		χ2(1)= p=0.8 φ=0.0 n=143	86 12	χ2(1)=0 p=0.468 φ=0.061 n=143	3	χ2(1)= p=0.0 φ=0.20 n=143	12* 09	p ^a =0 φ=0. n=1 ²	047	χ2(1)= p=0.52 φ=0.05 n=143	26 53	p=0. φ=0.	064
Spouse's job as a healthca	are profess	sional												5 28 4 18
Yes	5	68	36	37	38	35	36	37	5	68	29	44	34 18	
No	7	46	27	26	31	22	14	39	6	47	18	35		
	χ2(1)=1.4 p=0.230 φ=0.107 n=126	441	χ2(1)= p=0.8 φ=0.0 n=126	57 16	χ2(1)=0 p=0.474 φ=0.064 n=126	ŀ	χ2(1)= p=0.00 φ=0.23 n=126	09* 31	p ^a =0 φ=0. n=12	078	χ2(1)= p=0.50 φ=0.05 n=126)9 59	χ2(1) p=0. φ=0. n=12	28 18 =0.083 774 026

^aFisher's Exact, ^{*}p<.05, φ: Effect size for Phi, religion: Religious believes, Full PPE: Having full personal protective equipment while working, Appreciation: Getting public appreciation, psychological support: Getting psychological support, adequate rest: Having adequate sleep/rest, Additional income: Having additional income, EMPs: Emergency medicine physicians, PPE: personel protective equipment, COVID-19: Coronavirus disease-2019, n: Number

Discussion

Research findings revealed that EMPs use mostly problemoriented approach in combating the stress and mainly used social support, self-confident, optimistic, helpless, and submissive approaches, respectively. Other studies indicate that healthcare professionals use a self-confident approach more to deal with stress (16,17). In this research, it was found that EMPs used the most social support seeking approach. This may be due to the general stress caused by working in the field of health, as well as the stress factors brought by the COVID-19 pandemic. Sagar et al. (18) state that individuals can tend to combat stress through social support when there is not much to interfere with the source of stress. Besides, the increasing social support of society may have reinforced this trend. In many countries such as the United States of America and Turkey, expressing their feelings of gratitude to healthcare professionals and providing social support well-attended events, such as certain times of applause on the balconies, were organized through social media (19,20). As a matter of fact, research findings in the literature emphasize the relationship between perceived social support seeking and active coping approach to stress (21-23). It is stated that the approach to seeking social support triggers the feeling of sympathy, increases social resources, and reduces the sense of loneliness (24). Also, the influential social support offered during and after stressful situations increases the psychological resilience and work performance (25). In a study conducted during the COVID-19 pandemic, it was concluded that there was a negative relationship between the social support level perceived by healthcare professionals and their stress levels (26). There are also studies that examine healthcare professionals' approach to cope with stress supporting the research findings (27,28).

The factors that EMPs stated in this research to cause stress in the COVID-19 pandemic were similar to the study results investigating stress factors felt by the healthcare professionals during the MERS-CoV epidemic (29). Also, similar outcomes were found in another study examining healthcare professionals' stress factors and managers' expectations in the COVID-19 pandemic (30). Furthermore, in a study conducted with healthcare professionals during the COVID-19 pandemic in China, it was found that they perceived transmitting the virus to their families and lack of PPE as a stress factor (31).

Research findings show a significant difference between men and women in favor of men in terms of their approach to dealing with stress by problem-oriented and optimistic approaches. Sinha and Latha suggest that this difference in women and men's approach to coping with stress may be due to the interaction of sex hormones with adrenaline, noradrenaline, and cortisol, which are the three major stress hormones (32). There are studies in the literature revealing that men are more optimistic than women (33). Besides, it is stated that optimists tend to use more problem-oriented coping strategies than pessimists (34). This research finding is compatible with the results of the active approach (32,35), and the optimistic approach findings among men and women healthcare professionals in favor of the problem (36).

Additionally, stress factors, lack of medical equipment, the necessity of frequent cleaning and equipment change, and the lack of definitive treatment and vaccine, the unknown end date of the pandemic perceived by EMPs were found related to gender. Folkman and Lazarus state that the coping approaches of women and men towards emotion do not differ in similar contexts of life, but they differ when it comes to the context in which stress occurs (12).

Coping with stress	Mod	del	Unstandardize	d coefficients	Standardized coefficients	t	p-value	95.0% CI	
approaches			В	Std. Error	Beta			Lower bound	Upper bound
	1	Constant	64.605	1,479		43.693	0.000	61.690	67.521
Problem-		Full PPE (yes)	-5.250	2,031	-0.181	-2.585	0.010*	-9.255	-1.245
oriented		Constant	66.073	1,609		41.059	0.000	62.900	69.247
approach	2	Full PPE (yes)	-4.809	2,022	-0.165	-2.379	0.018*	-8.796	-0.822
	_	Adequate rest (yes)	-4.599	2,090	-0.153	-2.201	0.029*	-8.720	-0.478
		R=0.236, R ² =0.056, F(2,	197)=5.827, p=0.	003, Durbin Wa	tson=2.160, VIF=	1.010			
Self-	1	Constant	67.173	1.758		38.206	0.000	63.706	70.640
confident approach		Full PPE	-8.593	2.415	-0.245	-3.558	0.000*	-13.355	-3.830
арргоасп		R=0.245, R ² =0.060, F(1,1	98)=12.659, p=0	.000, Durbin Wa	itson=2.1, VIF=1				
		Constant	60.847	1.720		35.369	0.000	57.454	64.239
Optimistic approach		Adequate rest (yes)	-6.522	2.828	-0.162	-2.306	0.022	-12.100	-0.945
арргоасп		R=0.162, R ² =0.026, F(1,1	98)=5.318, p=0.0)22. Durbin Wat	son=2, VIF=1				
Social		Constant	67.147	1.702		39.445	0.000	63.790	70.504
support seeking		Additional income (yes)	-5.168	2.457	-0.148	-2.103	0.037*	-10.014	-0.323
approach		R=0.148, R ² =0.022, F(1,1	98)=4.424, p=0.0)37, Durbin Wat	son=1.9, VIF=1				'
	1	Constant	28.526	2.213		12.888	0.000	24.161	32.890
Emotion-		End date (yes)	6.191	2.573	0.169	2.406	0.017*	1.117	11.265
oriented		Constant	25.934	2.481		10.454	0.000	21.042	30.826
approach	2	End date (yes)	6.456	2.550	0.176	2.531	0.012*	1.427	11.485
		Additional income (yes)	4.991	2.239	0.155	2.229	0.027*	0.576	9.407
	3	Constant	23.755	2.652		8.958	0.000	18.525	28.984
		End date (yes)	5.999	2.535	0.163	2.367	0.019*	1.000	10.998
		Additional income (yes)	4.864	2.219	0.151	2.192	0.030*	0.488	9.239
		Full PPE (yes)	4.866	2.226	0.151	2.186	0.030*	0.476	9.255
		R=0.274, R ² =0.075, F(3,1	96)=5.288, p=0.0	002, Durbin Wat	son=1.9, VIF=1-1	.009			
	1	Constant	27.644	2.487		11.115	0.000	22.739	32.549
		End date (yes)	7.970	2.891	0.192	2.756	0.006*	2.268	13.671
		Constant	24.600	2.784		8.835	0.000	19.108	30.091
Helpless	2	End date (yes)	8.280	2.863	0.200	2.893	0.004*	2.635	13.925
approach		Additional income (yes)	5.864	2.513	0.161	2.333	0.021*	0.908	10.820
		Constant	22.069	2.974		7.421	0.000	16.204	27.934
	3	End date (yes)	7.750	2.843	0.187	2.726	0.007*	2.144	13.356
)	Additional income (yes)	5.715	2.488	0.157	2.297	0.023*	0.808	10.623
		Full PPE (yes)	5.649	2.496	0.155	2.263	0.025*	0.726	10.572
		R=0.294, R ² =0.087, F(3,1	96)= 6.203 n=0	000. Durbin Wa	tson=1.8 VIF=1-	1.009	1	<u> </u>	1

*p<0.05, Full PPE: Having full personal protective equipment while working, Adequate rest: Having adequate sleep/rest, Additional income: Having additional income, End date: Unknown end date of the pandemic. EMPs: Emergency Medicine Physicians, PPE: personel protective equipment, Std: Standard

Research results show a significant difference between married and single EMPs in favor of married people in terms of passive and helpless coping approaches to stress. The risk of transmitting the virus to their families, long shifts, lack of full PPE, and lack of medical equipment was related to marital status. There is evidence that satisfaction with the workplace's physical conditions decreases, the helpless approach to coping with stress increases in individuals (14). It is stated that individuals tend towards passive and helpless coping strategies when they feel that the situation is unchangeable and that control is not in their hands (14,37). Also, the loss of beliefs that they can manage the process in this stressful situation, seeing themselves as the cause of the negativities, may cause them to fail to produce a solution to the problem and take a helpless approach (14). It is suggested assuring care of healthcare professionals' family members would enhance workforce confidence and availability (38). However, no significant difference was found between married and single EMPs in terms of problem-oriented stress coping approaches, partially overlaps with other research findings in the literature

It was seen that the helpless stress approaches of smoker EMPs were higher than non-smokers. Besides, the necessity of frequent cleaning and equipment change as a stress factor was related to smoking behavior. This may be because smoking has a shortterm and temporary function that relieves stress. Mansouri et al. (39) found significant positive relationships between the number of cigarettes smoked per day and escape/avoidance, distancing behaviors, which are passive stress approaches to emotions. Additionally, the comorbidity factor and lack of medical equipment were related to having a chronic disease. At this point, EMPs may be trying to suppress the feeling of helplessness they experience in the face of stress factors brought about by the COVID-19 pandemic, which is not yet fully controlled. Also, the fact that smoking is a preventive factor in the treatment of COVID-19 may lead those who are currently smoking to feel themselves at higher risk and lead to an inevitable acceptance in the face of current stress. Indeed, there is evidence in the literature that reveals the link between smoking and negative outcomes of the COVID-19 treatment (40).

Research results suggest that the submissive stress approach of EMPs that remain with their family after their shift is significantly higher than those who stay alone. Besides, after-shift accommodation was related with the risk of transmitting the virus to their families, long shifts and having fewer colleagues in shifts. In the COVID-19 pandemic, public guesthouses and hotels are put into service for the after-shift stays of healthcare professionals to reduce the possibility of transmitting the virus to their families (41). However, despite this opportunity, those who have children

or parents looking after may have to stay in their homes after their shifts. Besides, having children was found related to long shifts and having fewer colleagues in shifts. Also, having a spouse work as a healthcare professional was related long shifts. This can be explained by the fact that EMPs cannot find time and energy to share with their children due to increased workload and decreased rest periods. Prolonged shifts can prevent the individual from fulfilling his responsibilities regarding child care, household chores, and shopping (42). In this case, the individual may adopt a fatalistic attitude and accept to experience stress-related negativities and take a submissive approach (14).

It was found that working alone in a shift was associated with perceiving the risk of self-contamination, long shifts, lack of full PPE, and lack of co-workers. This may be related to the more fatigue of working alone, increased virus load and relaxation in the measures taken, or the lack of time to take the necessary precautions and the necessary professional support. It is stated that working alone increases mental and physical workload and psychosocial risks (43). At this point, it can be noted that dealing with irrefutable personal needs of healthcare professionals such as adequate rest and care of elderly family members in the COVID-19 pandemic will help maintain their individual and team performance in this marathon (38).

Results of this research partially coincide with the findings of the study conducted during the MERS-CoV epidemic period regarding the factors that were stated to be effective in coping with stress in healthcare professionals (29). It is observed that one of the sources of healthcare professionals' work-related stress before COVID-19 pandemic is not being appreciated. In the COVID-19 pandemic period, appreciation of the EMPs was found to be among the factors they stated to cope with stress effectively. This highlights a critical point in showing the change in society's approach to healthcare professionals. The appreciation was found significantly related to the situation of having children and spouse being a healthcare professional. This may be related to the appreciation of healthcare professionals' devoted efforts in the pandemic by society, being a role model for their children, and the satisfying aspect of winning the community's praise in their children's eyes. Likewise, since the spouse is also a healthcare professional, sharing the same difficulty, struggle and appreciation process can be effective in the EMP's coping with stress as a social support factor. In another study, it was found that having a spouse working in the same area and knowing the content of the spouse's work, is beneficial to both to share information and to understand the negativities of the job and to find solutions (44).

Getting psychological support was found related with having a chronic disease. This finding may be related to those with chronic disease taking a more pessimistic, fatalistic and passive approach to cope with the COVID-19 pandemic. Studies show that when healthcare professionals experience physiological or psychological health problems, they prefer self-treatment rather than consulting a physician (45). Those who do not have a chronic disease may be more willing and diligent to get psychological support from their social circles or professionals in coping with stress with a more optimistic approach.

The research findings showed that the variables of having full PPE while working and having sufficient sleep and rest were significant predictors of active approach attitudes towards the problem used by EMPs to deal with stress. When analyzed in terms of sub-dimensions, it was determined that having full PPE while working predicted the self-confident approach and having sufficient sleep and rest predicted the optimistic approach. Indeed, other research results reveal that sleep quality is an essential predictor of the stress experienced by healthcare workers in the COVID-19 pandemic (26).

According to this, having full PPE while trying to reduce the risk of virus transmission can reinforce EMPs' desire to fight this stressful situation. It can help them to take stronger steps in the fight against COVID-19 with the sense of trust given by taking precautions. Also, having the opportunity to sleep and rest can positively affect the psychological processes by providing the soul and the body to relax and contributing to the individual's attitude towards stress to be more constructive and optimistic. It was concluded that getting additional income significantly predicted the level of EMPs using the social support seeking approach to deal with stress. In the literature, social support's dimension to support needs for concrete needs such as time, money, and labor is called instrumental support (46,47). At this point, it can be said that getting additional income constitutes the instrumental support dimension of EMPs' social support seeking approaches to cope with stress.

Research findings show that the factors of the unknown end date of the pandemic, getting additional income, and having full PPE while working significantly predict the tendencies of EMPs to choose a passive coping approach to stress and emotions. When analyzed in terms of sub-dimensions, none of the variables discussed in the study can predict the submissive approach statistically. It was determined that the factors of the unknown end date of the pandemic, getting additional income, and having full PPE while working are significant predictors of the helpless approach. In this context, the current uncertainty of how long the COVID-19 pandemic will last and when it will end can create a sense of desperation and a lack of control in EMPs participating in the research. Besides, while getting additional income due

to the pandemic makes EMPs feel safe, it may also cause them to perceive that getting extra income is not as meaningful and valuable as before the pandemic. Having full PPE while working can make EMPs feel safe against the virus; on the other hand, they may feel helpless in fighting against the virus and have anxiety about the protection without having full PPE.

Study Limitations

The research was carried out with 200 EMPs working in EDs during the COVID-19 pandemic. The study can be conducted in a larger sample of other healthcare professionals. Also, research data is limited to data collected through a scale to identify survey and stress coping approaches. At this point, semiconstructed interviews can be held with a smaller group selected from the research participants for a more detailed evaluation. The research was conducted with limited demographic features belong to participants. In subsequent studies, the variables such as age, work experience, duration of shifts, number of children, and number of patients in a shift can be examined to cope with stress.

Conclusion

It has been determined that EMPs use problem-based active approaches the most and the social support seeking approach significantly among them in the fight against stress brought by the COVID-19 pandemic. It is crucial to provide healthcare professionals with the support they need and analyze stress factors. It is recommended to increase the social support provided to healthcare professionals and to offer them more effective resources in response to the social support seeking approach. Based on our finding that the risk of transmitting the virus to EMPs' families as the most stressful factor during the COVID-19 pandemic, practices aimed at protecting the families of healthcare professionals can be introduced. Within the research scope, it was observed that leisure activities were the most effective in the fight against stress brought about by the COVID-19 pandemic. In this context, the duration of shifts should be arranged so that healthcare professionals can allocate time for themselves, and psychological support should also be provided.

Ethics

Ethics Committee Approval: This study was approved by Düzce University Non-Interventional Clinical Research Ethics Board with the registration number 2020/84.

Informed Consent: Informed consent was obtained from those who volunteered to participate in the study.

Peer-review: Externally peer-reviewed.

Authorship Contributions

Concept: M.C.D, A.K.A., Design:M.C.D, A.K.A., Data Collection and/or Processing: M.C.D, A.K.A., Analysis and/or Interpretation: M.C.D, A.K.A., Literature Search: M.C.D, A.K.A.,

Writing: M.C.D, A.K.A.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

References

- Cai H, Tu B, Ma J, Chen L, Fu L, Jiang Y, et al. Psychological Impact and Coping Strategies of Frontline Medical Staff in Hunan Between January and March 2020 During the Outbreak of Coronavirus Disease 2019 (COVID19) in Hubei, China. Med Sci Monit. 2020;26:e924171.
- Shanafelt TD, Mungo M, Schmitgen J, Storz KA, Reeves D, Hayes SN, et al. Longitudinal Study Evaluating the Association Between Physician Burnout and Changes in Professional Work Effort. Mayo Clin Proc. 2016;91:422-31.
- Kang L, Li Y, Hu S, Chen M, Yang C, Yang BX, et al. The mental health of medical workers in Wuhan, China dealing with the 2019 novel coronavirus. Lancet Psychiatry. 2020;7:e14.
- Santarone K, McKenney M, Elkbuli A. Preserving mental health and resilience in frontline healthcare workers during COVID-19. Am J Emerg Med. 2020;38:1530-1.
- Huang J, Liu F, Teng Z, Chen J, Zhao J, Wang X, et al. Care for the Psychological Status of Frontline Medical Staff Fighting Against Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2020;71:3268-9.
- Lai J, Ma S, Wang Y, Cai Z, Hu J, Wei N, et al. Factors Associated With Mental Health Outcomes Among Health Care Workers Exposed to Coronavirus Disease 2019. JAMA Netw Open. 2020;3:e203976.
- Revicki DA, May HJ, Whitley TW. Reliability and validity of the Work-Related Strain Inventory among health professionals. Behav Med. 1991;17:111-20.
- Schwartz JE, Pickering TG, Landsbergis PA. Work-related stress and blood pressure: current theoretical models and considerations from a behavioral medicine perspective. J Occup Health Psychol. 1996;1:287-310.
- Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012;9:360-70.
- Salyers MP, Bonfils KA, Luther L, Firmin RL, White DA, Adams EL, et al. The Relationship Between Professional Burnout and Quality and Safety in Healthcare: A Meta-Analysis. J Gen Intern Med. 2017;32:475-82.
- Gavin B, Hayden J, Adamis D, McNicholas F. Caring for the Psychological Well-Being of Healthcare Professionals in the Covid-19 Pandemic Crisis. Ir Med J. 2020;113:51.
- Folkman S, Lazarus RS. An analysis of coping in a middle-aged community sample. J Health Soc Behav. 1980;21:219-39.
- 13. Kasiulevičius V, Šapoka V, Filipavičiūtė R. Sample size calculation in epidemiological studies. Gerontologija. 2006;7:225-31.
- 14. Şahin NH, Durak A. Stresle başa çıkma tarzları ölçeği: Üniversite öğrencileri için uyarlanması. Turkish Journal of Psychology. 1995;10:56-73.
- Sarmento RP, Costa V. Confirmatory Factor Analysis--A Case study. arXiv preprint arXiv. 2019;1905.05598. Available from: https://arxiv.org/ abs/1905.05598 [Accessed 21 May 2020].
- Baysak E, Eroğlu MZ, Utku Ç, Kaya B. Evaluation of post traumatic stress disorder, burnout and coping styles in emergency and intensive care unit employees. J Clin Psy. 2019;22:36-47.

- 17. Şen H, Toygar M, Türker T, İne N, Tuğcu H, Keskin H. The Evaluation of Techniques for Overcoming with the Stress in a Physician Group. TAF Prev Med Bull. 2012;11:211-8.
- 18. Sagar SS, Lavallee D, Spray CM. Coping with the effects of fear of failure: A preliminary investigation of young elite athletes. Journal of Clinical Sports Psychology. 2009;3:73-98.
- Twitter (2020). #SağlıkcılarınıAlkısla [Online]. Website https://twitter. com/search?q=%23Sa%C4%9Fl%C4%B1kc%C4%B1lar%C4%B1n%C4%B1Alk %C4%B1sla&src= typed_query [Accessed 21 May 2020].
- Twitter (2020). #SolidarityAt8 [Online]. Website https://twitter.com/ SolidarityAt8 [Accessed 21 May 2020].
- 21. DeLongis A, Holtzman S. Coping in context: the role of stress, social support, and personality in coping. J Pers. 2005;73:1633-56.
- Dougall AL, Hyman KB, Hayward MC, McFeeley S, Baum A. Optimism and Traumatic Stress: The Importance of Social Support and Coping 1. J Appl Soc Psychol. 2001;31:223-45.
- 23. Malkoç A, Yalçin I. Relationships among Resilience, Social Support, Coping, and Psychological Well-Being among University Studentss. Turkish Psychological Counseling and Guidance Journal. 2015;5:35-43.
- 24. Prati G, Pietrantoni L. Optimism, social support, and coping strategies as factors contributing to posttraumatic growth: A meta-analysis. Journal of loss and trauma. 2009;14:364-88.
- 25. Brooks SK, Rubin GJ, Greenberg N. Traumatic stress within disaster-exposed occupations: overview of the literature and suggestions for the management of traumatic stress in the workplace. Br Med Bull. 2019;129:25-34.
- Xiao H, Zhang Y, Kong D, Li S, Yang N. The Effects of Social Support on Sleep Quality of Medical Staff Treating Patients with Coronavirus Disease 2019 (COVID-19) in January and February 2020 in China. Med Sci Monit. 2020:26:e923549.
- 27. Sülemiş İ, Dönmez L. Coping Strategies with Stress among Female Staff at a University Hospital. Akd Med J. 2017;1:41-7.
- 28. Akdemir M, Çetin E, Ersoy M, Polat B, Çulhacı E, Ergün A, et al. The Ways of Coping with the Stress and the Related Factors among Sixth-year Medical Students. Tıp Eğitimi Dünyası. 2015;14:33-43.
- Khalid I, Khalid TJ, Qabajah MR, Barnard AG, Qushmaq IA. Healthcare Workers Emotions, Perceived Stressors and Coping Strategies During a MERS-CoV Outbreak. Clin Med Res. 2016;14:7-14.
- Shanafelt T, Ripp J, Trockel M. Understanding and Addressing Sources of Anxiety Among Health Care Professionals During the COVID-19 Pandemic. JAMA. 2020;323:2133-4.
- Chen Q, Liang M, Li Y, Guo J, Fei D, Wang L, et al. Mental health care for medical staff in China during the COVID-19 outbreak. Lancet Psychiatry. 2020;7:e15-e6.
- 32. Sinha S, Latha GS. Coping response to same stressors varies with gender. National | Physiol Pharm Pharmacol. 2018;8:1053-6.
- 33. Jacobsen B, Lee JB, Marquering W, Zhang CY. Gender differences in optimism and asset allocation. J Econ Behav Org. 2014;107:630-51.
- 34. Scheier MF, Carver CS, Bridges MW. Optimism, pessimism, and psychological well-being. In E. C. Chang (Ed.) Optimism & pessimism: Implications for theory, research, and practice . American Psychological Association. 2001. p.189-216.
- 35. Koinis A, Giannou V, Drantaki V, Angelaina S, Stratou E, Saridi M. The Impact of Healthcare Workers Job Environment on Their Mental-emotional Health. Coping Strategies: The Case of a Local General Hospital. Health Psychol Res. 2015;3:1984.
- Ergin A, Uzun SU, Bozkurt Aİ. The Methods of Coping with the Stress Among Medical Faculty Students and the Relationship between Sociodemographic Characteristics and these Methods. Firat Med J. 2014;19:31-7.

- 37. Carver CS, Scheier MF, Weintraub JK. Assessing coping strategies: a theoretically based approach. J Pers Soc Psychol. 1989;56:267-83.
- 38. Adams JG, Walls RM. Supporting the Health Care Workforce During the COVID-19 Global Epidemic. IAMA. 2020;323:1439-40.
- 39. Mansouri A, Kavi E, Ahmadpoori SF, Amin E, Bazrafshan MR, Piroozi A, et al. Cigarette Smoking and Coping Strategies with Stress in Young Adults of Larestan. Jundishapur J Health Sci. 2018;11:e83121.
- 40. Vardavas CI, Nikitara K. COVID-19 and smoking: A systematic review of the evidence. Tob Induc Dis. 2020;18:20.
- 41. Republic of Turkey Ministry of Health (2020). New Regulations for Healthcare Workers to Fight Coronavirus [online]. Website https://www.saglik.gov.tr/EN,64696/new-regulations-for-healthcare-workers-to-fight-coronavirus.html [accessed 21 May 2020].
- 42. Harrington JM. Health effects of shift work and extended hours of work. Occup Environ Med. 2001;58:68-72.

- 43. Weerdt CVD, Baratta R. Changes in working conditions for home healthcare workers and impacts on their work activity and on their emotions. Production. 2015;25:344-53.
- 44. Şener E, Kocaoğlu M, Baybek H, Kıvrak A. Dual Career Couples in the Health Sector: A Qualitative Study with Nurse Couples. Hacettepe Journal of Health Administration. 2018;21:461-72.
- 45. Töyry S, Räsänen K, Kujala S, Aärimaa M, Juntunen J, Kalimo R, et al. Self-reported health, illness, and self-care among finnish physicians: a national survey. Arch Fam Med. 2000;9:1079-85.
- Semmer NK, Elfering A, Jacobshagen N, Perrot T, Beehr TA, Norbert B. The emotional meaning of instrumental social support. Int J Stress Manag. 2008;15:235-51.
- 47. Demaray MK, Malecki CK, Jenkins LN. Social support: How to assess and include it in research on prevention and youth outcomes. In Handbook of youth prevention science: Routledge. 2012. p. 175-88.